An upper bound on the shortness exponent of 1-tough, maximal planar graphs
نویسندگان
چکیده
منابع مشابه
An update on non-Hamiltonian 54-tough maximal planar graphs
Studying the shortness of longest cycles in maximal planar graphs, we improve the upper bound on the shortness exponent of the class of 54 -tough maximal planar graphs presented by Harant and Owens [Discrete Math. 147 (1995), 301–305]. In addition, we present two generalizations of a similar result of Tkáč who considered 1-tough maximal planar graphs [Discrete Math. 154 (1996), 321–328]; we rem...
متن کاملOn properties of maximal 1-planar graphs
A graph is called 1-planar if there exists a drawing in the plane so that each edge contains at most one crossing. We study maximal 1-planar graphs from the point of view of properties of their diagrams, local structure and hamiltonicity.
متن کاملAn upper bound for the Hamiltonicity exponent of finite digraphs
Let D be a strongly k−connected digraph of order n ≥ 2. We prove that for every l ≥ n 2k the power Dl of D is Hamiltonian. Moreover, for any n > 2k ≥ 2 we exhibit strongly k-connected digraphs D of order n such that Dl−1 is non-Hamiltonian for l = d n 2ke. We use standard terminology, unless otherwise stated. A digraph D = (V, A) of order n ≥ 2 is said to be strongly q-arc Hamiltonian if for an...
متن کاملAn Upper Bound on the First Zagreb Index in Trees
In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.
متن کاملa study on the effectiveness of textual modification on the improvement of iranian upper-intermediate efl learners’ reading comprehension
این پژوهش به منظور بررسی تأثیر اصلاح متنی بر بهبود توانایی درک مطلب زبان آموزان ایرانی بالاتر از سطح میانی انجام پذیرفت .بدین منظور 115 دانشجوی مرد و زن رشته مترجمی زبان انگلیسی در این پزوهش شرکت نمودند.
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1991
ISSN: 0012-365X
DOI: 10.1016/0012-365x(91)90099-n